博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDU1024 Max Sum Plus Plus 【DP】
阅读量:5091 次
发布时间:2019-06-13

本文共 2112 字,大约阅读时间需要 7 分钟。

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17164    Accepted Submission(s): 5651
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
 
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
 
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 
Sample Output
 
6 8
Hint
Huge input, scanf and dynamic programming is recommended.

/*** dp[i][j]表示以第i个数字结尾且选定并分成j份能得到的最大值。转移方程为** dp[i][j] = max(dp[i-1][j], max(dp[1...i-1][j-1])) + arr[i];** 假设开二维数组的话内存会超,所以得用滚动数组省空间。preMax[j]保存** 上一轮得到的dp[1...i][j]中的最大值,ans每次读取当前dp数组最大值** 用以更新preMax数组,最后一轮循环后ans保存的就是答案。*/#include 
#include
#define maxn 1000010#define inf 0x7fffffffint dp[maxn], preMax[maxn], arr[maxn];int max(int a, int b) { return a > b ? a : b;}int main() { int n, m, i, j, ans; while(scanf("%d%d", &n, &m) == 2) { for(i = 1; i <= m; ++i) { scanf("%d", &arr[i]); preMax[i] = dp[i] = 0; } preMax[0] = dp[0] = 0; for(j = 1; j <= n; ++j) { // 分成j份 ans = -inf; for(i = j; i <= m; ++i) { dp[i] = max(dp[i-1], preMax[i-1]) + arr[i]; preMax[i-1] = ans; ans = max(ans, dp[i]); } } printf("%d\n", ans); } return 0;}

转载于:https://www.cnblogs.com/lytwajue/p/7343939.html

你可能感兴趣的文章
Java基础(四) StringBuffer、StringBuilder原理浅析
查看>>
UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】
查看>>
LinkedList简要分析
查看>>
纯PHP实现定时器任务(Timer)
查看>>
分类树操作
查看>>
如何下载 Chrome 应用商店的 .crx 文件
查看>>
利用GDI+ for.NET 给图片加水印标记
查看>>
【转载】 扫描二维码自动识别手机APP下载地址
查看>>
js 对url进行编码和解码的三种方式
查看>>
windows phone 扫描二维码
查看>>
ubuntu(linux)占领小米平板2(mipad2)
查看>>
【java】自定义异常类
查看>>
【Oracle】Oracle基本数据类型总结
查看>>
第四周学习进度条3
查看>>
Rsync的配置与使用
查看>>
程序员应注意——米勒法则
查看>>
深刻理解Python中的元类(metaclass)
查看>>
[转]java String的经典问题(new String(), String)
查看>>
.net Core使用RabbitMQ
查看>>
博客园博客转至个人网站博客声明
查看>>